

Spatial Reasoning in Multimodal LLMs via CoT Distillation and Monte Carlo Tree Search for Dutch Facade-Element Detection: An Exploratory Study

Thesis submitted to Utrecht University for the degree of MSc Artificial Intelligence, July 2025.

Riccardo Campanella

8175721

Examiners: Dr. Metehan Doyran, Dr. Itir Önal Ertuğrul External Supervisor: Raphaël Gueulet (TNO)

Presentation Outline

- Motivation & Problem Statement
- Research Questions & Contributions
- Background
- Data Collection & Methodology
- Exploratory Results Analysis
- RQ Discussion & Limitations
- Conclusions & Future Work

Motivation: Building Energy Renovation

The Challenge

- Dutch buildings need energy retrofits for sustainability goals
- Manual facade assessment is time-consuming and expensive
- Current Computer Vision models lack domain-specific knowledge

The Opportunity

- Multimodal LLMs offer contextual reasoning capabilities
- Can process natural language descriptions of architectural features
- Potential for zero-shot transfer to specialized domains

Problem Statement

MQA Target Features:

- 1 Weep holes
- 2 Crawling space
- Chimneys
- 4 Pitched roof
- 5 Facade ventilation
- 6 Roof ventilation
- 1001 Ventilation
- Window ventilation
 - 8 Dormers
- 9 Roof windows
- 10 Attics living spaces
- Vegetation growth
- Balconies
- 13 Photovoltaic panels
- Window count

Reasoning Complexity:

 $\begin{array}{c} {\sf Visual \; Recognition} \; \to \; {\sf Geometric \; Inference} \; \to \\ {\sf Semantic \; Understanding} \; \to \; {\sf Context \; Analysis} \\ \end{array}$

Research Questions

Main Research Question

Are SoTA* Multimodal LLMs beneficial to identify applicable housing renovation concepts on Dutch building facades?

RQ1: Model Comparison

How does Chain-of-Thought reasoning (Qwen) compare to 3D scene graph methods (SpatialRGPT) in zero-shot prediction?

- Performance vs. SoTA models (GPT-4o)
- Impact of bounding box guidance

RQ2: Enhancement Methods

How can CoT reasoning MLLMs be enhanced for spatial recognition?

- Effect of 3D scene graph augmentation
- LoRA fine-tuning capabilities

Key Contributions

- Comprehensive MLLM Evaluation Framework
 - First systematic evaluation on real Dutch facade data
 - Baseline performance insights for architectural features
- 2 DuTCh SpaCE: Spatial Reasoning Enhancement
 - Mitigation: Novel dual-teacher distillation framework to mitigate Hallucinations
 - Compensation: Reasoning compensates for limited visual grounding
- 3 Reasoning vs. Grounding Trade-off Analysis
 - Knowledge Transfer: Domain expertise vs. model scale
 - Fast Scaling: Accessible path to spatial reasoning enhancement
- Practical Domain Adaptation Insights
 - LoRA + Knowledge Distillation + Test-time Search
 - Few-shot: Specialization framework for low-data domains

Background: Multimodal Large Language Models

Background: Grounding Chain-of-Thought Reasoning

Data Collection: Few-shot Dutch Building Facade

Multimodal integration: Captions and Scenes

Teacher 1: GPT-4o **Teacher 2: SpatialRGPT-bbox** Query Query Main Main Caption Caption Yes (2) Yes Generate Pair Evaluate Start new Generate Evaluate elationships Conversation Main Partial Score Feature Main Feature present Caption > 0.5? Pairs Caption Pairs Generate Generate No Evaluate Evaluate 3D-Scene 3D-Scene Sections No Conclusion Graph Graph Yes Yes Present? Present

Train Set (32)	Train	Set	(32)
----------------	-------	-----	------

Val Set (4)

Test Set (9)

Label	Distribution
No	44.7%
Yes	32.5%
Unknown	22.9%

Label	Distribution
No	40.4%
Yes	46.2%
Unknown	13.5%

Distribution
44.4%
39.3%
16.2%

Dual-Teacher Chain-of-Thought Framework for Spatial Facade Reasoning (DuTCh Space)

Methodology: Models Under Study

- GPT-40
- 2 SpatialRGPT-8B (Base/Bbox)
- Qwen2-7B-VL-Instruct

Categories	Datasets
Captioning	Image Paragraph Captioning [77], MSR-VTT [78], TextCaps [79]
Reasoning	CLEVR [80], NLVR [81], VisualMRC [82]
Translation	Multi30k [83]
VQA	ActivityNet-QA [84], DocVQA [85], GQA [86], iVQA [87], MSRVT

Multi30k [83]
 ActivityNet-QA [84], DocVQA [85], GQA [86], iVQA [87], MSRVTT-QA [78],
 MSVD-QA [78], OCR-VQA [88], ST-VQA [89], ViQuAE [90], VQAv2 [91],
 Visual Dialog [92]

Categories	Datasets
Classification	V3Det [93], COCO [40], LVIS [94]
Caption	V3Det [93] VG [95], RefCOCO [96]
Relationship	VG [95]
REC	RefCOCO [96]

Table 11: The region-level SFT blend [19] we used.

User: Can you tell me if this house has photovoltaic panels?

SpatialRGPT: Yes, Ground Truth (GT)=Yes

Two photovoltaic arrays are visible on the pitched roof. The surface geometry and inclination match standard PV module dimensions (approx. $1m \times 1.7m$ each), and they are aligned symmetrically on the left and right roof planes.

User: Does the house include a crawling space?

SpatialRGPT: Unknown, GT=Yes

There's no visible vent grid or elevation suggesting a ventilated plinth. Sub-floor access may be internal or obscured in this point cloud angle.

User: Are attics living spaces included?

SpatialRGPT: No, GT=No

No dormer extensions or roof windows suggestive of habitable attic conversion are visible. The upper roof volume appears sealed, likely used for insulation or storage only.

User: What's the window count on the front facade?

SpatialRGPT: 6 Windows, GT=7

3 on the ground floor, and 3 on the upper floor. No side windows detected from this viewpoint.

CoT Distillation by Imitation via CE Minimization

$$\mathcal{L}_{\mathsf{DCoT}} = -\frac{1}{T} \sum_{t=1}^{T} \log p_{\theta_{S}}(y_{t}^{(T)} \mid y_{< t}^{(T)}, x_{mm})$$

Cross-Entropy vs Entropy Minimization

- Assumption: Correct Reasoning yields Low Entropy
- Alignment: Convergence & Overfitting
- Specificity: Penalizes incorrect but confident predictions
- Ocrrectness: Abstract reasoning transfer

Multimodal vs Distilled CoT

MCoT	DCoT (Ours)
Human-annotated rationales	Raw Teacher rationales
29K (ScienceQA $+$ A-OKVQA)	32 examples
SFT on CE Loss	KD via SFT on CE Loss
Vision-language fusion layers	LLM attention modules only
Two-stage (rationale \rightarrow answer)	Single-stage (end-to-end)
Full fine-tuning	LoRA
Multimodal	Complex chains
	Human-annotated rationales 29K (ScienceQA $+$ A-OKVQA) SFT on CE Loss Vision-language fusion layers Two-stage (rationale \rightarrow answer) Full fine-tuning

Scaling Laws: Teacher-Student Knowledge Distillation

Scale Advantage (Teacher/Student Ratio)

Our methodology can be further scaled!

Parameter-Efficient Fine-tuning with LoRA

- learning_rate: 2e-5 (linear warmup)
- or (rank): 16
- lora_alpha: 32
- early_stopping: patience = 3
- target_modules: ["q_proj",
 "k_proj", v_proj", "o_proj"]

Test-Time Enhancement: Mulberry-Qwen CoMCTS

Configuration	Mulberry	Mulberry-Qwen (Ours)
Model Selection	GPT-4o, LLaMA, Qwen	Qwen-7B $+$ Qwen-DCoT
Search Strategy	CoMCTS	CoMCTS
Training Strategy	SFT on Mulberry-260K	Zero-shot
Max Iterations	20	3
Reasoning Variation	High (inter-model)	Reduced (local/global)
Reasoning Robustness	Diverse patterns	Consistent domain-specific patterns
Bias Mitigation	Cross-model vote	Homogeneous model vote
Hallucination Reduction	High (multi-model)	Low (same-family)
Test Time Compute	Higher	Lower

Qualitative Illustration of Qwen-CoMCTS Spatial Reasoning

Evaluation Protocol & Metrics

Experimental Design

- Zero-shot: All models on 45 images
- Fine-tuned: 4 Qwen variants on test set
- Multiple runs: 10 evaluations per configuration
- ullet **Robustness:** Average \pm standard deviation

Table: Performance Metrics and Their Evaluation Focus

Metric(s)	Evaluation Focus
Accuracy, Balanced Accuracy Precision, Recall, F1-score MAE / MSE Feature-wise Analysis	 → Generalization → Hallucination Control → Counting Accuracy (e.g., windows) → Spatial Reasoning via Feature Complexity

$$\label{eq:F1-score} \text{F1-score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Results Overview: Model Performance

Table:	Performance	Comparison	Across	Models
--------	-------------	------------	--------	--------

Model	Accuracy	B. Acc.	Prec.	Recall	F1	MAE
GPT-4o*	0.567	0.458	0.362	0.429	0.373	$\textbf{2.60}\pm\textbf{0.14}$
Mulberry-Qwen	0.479	0.370	0.178	0.333	0.226	3.78
Qwen2-VL-7B*	0.371	0.341	0.181	0.274	0.200	4.44
SpatialRGPT-bbox*	0.446	0.371	0.197	0.372	0.240	3.31 ± 0.29
${\sf SpatialRGPT*}$	0.287	0.330	0.139	0.311	0.171	6.67

Key Findings

- GPT-4o dominates across all metrics
- Mulberry-Qwen achieves 11% accuracy improvement over baseline
- Bounding box guidance helps SpatialRGPT significantly
- **Gap with GPT-4o reduced**: 20%-8% in Acc., 11-8% in B. Acc.
- Hallucinations reduced significantly with DuTCh SpaCE
- Robustness: All models with (*) showed std. dev. so Mulberry-Qwen is the most robust overall and feature-wise

Feature Performance (Accuracy)

Feature Hallucinations (F1-score)

Summary: DuTCh Space Achievements

MLLM Benefits Before	with DuTCh Space	Limitations After	
 Zero-shot transfer capabilities 	 Knowledge distillation works 	 Spatial complexity challenges 	
 Contextual reasoning about features 	 Test-time compute helps 	 Numerical reasoning gaps 	
 Interpretable explanations via CoT 	 Small models can compete 	 Domain-specific biases 	
 Scalable to large building stocks 	 Net effect: Reduced under-prediction (FN), slight over-confidence (FP) 	 Computational requirements 	

Key Takeaway

- ullet Successful Mitigation: DCoT + MC Tree Search reduces hallucinations by promoting evidence-based reasoning
- Reasoning compensates for limited visual grounding
- Domain expertise can rival raw scale

RQ1 Findings: Model Architecture Comparison

RQ1a: SoTA Comparison

GPT-4o superior across all metrics (20-30% gap with smaller models)

- Benefits from scale (\sim 125-220B vs. 7-8B parameters)
- Comprehensive multimodal training
- Better generalization to Dutch-specific features

RQ1b: Bounding Box Guidance

SpatialRGPT with bounding boxes: 15% accuracy improvement

- Helps with spatial localization
- Reduces false positives
- Doesn't improve balanced accuracy significantly
- Additional annotation step

Architecture Insights: Different MLLMs have complementary strengths for different feature types

RQ2 Findings: Enhancement Methods

RQ2a: Scene Graph Augmentation

No performance difference between DCoT with/without scene graphs

- Qwen architecture may not effectively utilize explicit spatial representations
- DCoT reasoning already captures sufficient spatial relationships
- Need deeper integration beyond simple text augmentation

RQ2b: LoRA Fine-tuning

Significant improvements across all metrics

- 10% accuracy improvement over baseline
- Reduces gap with GPT-40 from 20% to 8%
- Quality reasoning in few examples can match mitigate lack of extensive
- Maintains general capabilities while adding domain expertise

Limitations & Challenges

Dataset Limitations

- Scale: Only 45 images (vs. typical 100K+ datasets)
- Annotation: Subjective "unknown" categories
- Imbalance: Most features absent in dataset

Technical Limitations

- Visual Grounding: No vision encoder fine-tuning
- Spatial Integration: Scene graphs not effectively utilized
- Problem Complexity: 14 questions in single prompt
- Computational: Limited test-time search iterations

Methodological Considerations

- Cross-entropy loss vs. preference learning
- LoRA vs. full fine-tuning trade-offs
- Teacher quality vs. scale in distillation

Future Work & Research Directions

Immediate Extensions

- Scale dataset: 1000+ images from web scraping + automated filtering
- Problem decomposition: Split into building-section-specific questions
- Vision Grounding: Fine-tune multimodal components
- Advanced search: Increase CoMCTS iterations and model diversity

Advanced Methodologies

- RLHF: Human preference optimization for spatial reasoning
- Multi-adapter: Feature-specific LoRA modules
- **Grounded CoT:** Visual evidence linking in reasoning chains
- DoRA: Weight decomposition for stable fine-tuning

Broader Impact & Applications

Energy & Sustainability

- Accelerate building renovation assessment
- Reduce manual inspection costs (time & labor)
- Enable large-scale retrofit planning
- Support EU Green Deal objectives

Technical Contributions

- Domain Adaptation: Framework for specialized applications
- Multimodal Reasoning: Insights into reasoning vs. grounding
- Knowledge Distillation: Teacher-student dynamics in few-shot settings
- Test-Time Compute: Practical application in complex reasoning

Conclusions

DuTCh SpaCE key findings

- MLLMs are beneficial for facade analysis with proper enhancement
- Reasoning can compensate for limited visual grounding capabilities
- 3 Domain expertise rivals scale in knowledge transfer scenarios

Theoretical Contributions

- First systematic MLLM evaluation on few-shot Dutch architecture
- Novel dual-teacher Distillation Framework for Reasoning vs Grounding
- Scaling laws in few-shot multimodal domain adaptation

Practical Impact

- Accessible path to spatial reasoning enhancement
- Framework for domain-specific MLLM adaptation
- Cost-effective alternative to explicit spatial grounding
- Foundation for automated building assessment systems

Acknowledgements

Supervision & Guidance

- Dr. Metehan Doyran First Examiner, Utrecht University
- Dr. Itir Önal Ertuğrul Second Examiner, Utrecht University
- Raphaël Gueulet External Supervisor, TNO Machine Learning Engineer

TNO Research Support

Paolo de Heer - Data Scientist, Wietske van Kanten-Roos & J.M.
 Tang - Research managers

Personal Support

- Family Unwavering support throughout studies
- Friends Aryan Ashar, Shang-Jen Wang, Tom Slik IT Support
- Sarthak Anand Chat template implementation advice

Thank You!

Questions & Discussion

Riccardo Campanella

r.campanella@students.uu.nl Utrecht University, MSc Artificial Intelligence

Spatial Reasoning in Multimodal LLMs via CoT Distillation and Monte Carlo Tree Search for Dutch Facade-Element Detection: An Exploratory Study