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Introduction
This paper investigates whether we should look for Commonsense Reasoning inside Large Language
Models as their potential capacity for achieving general intelligence. Common sense reasoning remains a
signi�cant challenge in building AI systems, thereby we explore to which extent it is a key feature of
Intelligence and how we can measure it. In this work, we also raise concerns over the prior methodologies of
testing machine intelligence that failed to account for the internal workings of a model and focused on
behavioural performances. Speci�cally, drawing from the limitations of the Winograd Schema Challenge
and the Turing Test, we propose to use internal testing involving Mechanistic Reasoning to assess the real
model capabilities of intelligence based on Commonsense Reasoning. Further research on this paper's
�ndings is considered to bring added value to the ongoing theory of commonsense knowledge formalisation,
identi�cation, and improvement of systems with emergent capabilities closer to the AGI.

1. Unconstrained testing leads to failure
The defeat of the Winograd Schema Challenge (Kocijan et al. 2023) demonstrated howmachines can easily
pass tests of general Intelligence due to the perceived connections between tasks and methods. Indeed,
Hector Levesque’s pronoun disambiguation was selected as a task to test intelligence because it seems to
require the use of commonsense knowledge in humans to solve it, however, that was not the case for the
machines. Pre-trained transformer-based and �ne-tuned on these kinds of problems learned to solve the
challenge by using statistical correlations and achieved high accuracy demonstrating the weakness of using
surrogate tests. Hence the careful evaluation of proposing proxy problems as tests for general Intelligence.
Another concern arising from the same paper regards the creation of test sets that span, as much as possible,
instances of the targeted problem as well as nested modalities including physical, spatial, interpersonal, and
social reasoning. Solving the challenge demonstrated the pro�ciency of such models on problems of
di�erent domains but did not su�ce to prove their capabilities in general commonsense reasoning.
Furthermore, the WSC was subject to the critiques of the Turing Test (Frankish et al. 2014), for what
concerns the lack of evaluation of the functional organisation of a system to assess machine intelligence. The
challenge indeed was a mere behavioural test that appealed because of its ease of evaluation in determining
whether a model passed the test or not. No explanation was required to be provided from the model in
solving the problem, thereby exposing the test to the criticisms of the Chinese RoomArgument (Frankish et
al. 2014) where models still have issues of meaning, understanding, and interaction with the external world.



For that reason, it is necessary to prove that machines use common sense when providing answers and
making decisions, based on interpreting their internal knowledge.

2. General Intelligence comes along with a key feature:
commonsense reasoning
The upcoming passages o�er a critical examination, aiming to de�ne essential concepts for a thorough
internal analysis. Beginning with an exploration of commonsense reasoning, we delve into its intersection
with AGI, demonstrating its central role in building general intelligence.

2.1 Commonsense reasoning

To address the challenge of blind testing inherent in previous methodologies, a proposed solution involves
internal interventions to measure the generalisation of models across commonsense reasoning capacities.
However, before delving into this approach, it's essential to establish what is commonsense reasoning and its
signi�cance within the context of AGI. Commonsense reasoning involves making inferences and decisions
based on everyday knowledge that most people possess. According to this de�nition, AI systems need to
understand the context of a situation to make sense of it, and thereby master concepts such as time, space,
causality, and relationships between objects or events. Additionally, those systems must possess the ability to
make deductions based on available information to make reasonable guesses when the information is missing
(Zandie et al. 2023) or ambiguous. The abductions are also part of common sense as they can be used to
infer the most likely explanation or cause of a given set of facts or observations. Finally, another desiderata is
the existence of a knowledge base of the world facts about the physical world, social norms, cultural
practices, and other aspects of human experience.

2.2 Commonsense Reasoning and AGI

Arti�cial General Intelligence refers to a hypothetical AI system that possesses the ability to understand,
learn, and apply intelligence across a wide range of tasks and domains, similar to human-level intelligence.
AGI systems are characterised by their capacity for �exible problem-solving, adaptability to new situations,
and their ability to perform tasks autonomously without specialised programming for each task. These
systems are designed to exhibit cognitive versatility and to emulate the broad spectrum of cognitive abilities
observed in humans. The ultimate goal of reaching the AGI is to develop machines capable of generalising
knowledge and skills across diverse contexts, rather than being limited to speci�c, narrow domains. The
aspiration of achieving the AGI originated from the human desire to mimic human intelligence, thereby it
brings with it some expectations regarding the exhibition of similar skills of problem-solving and
adaptability. Those expectations arise from the human’s capacity to reason about the world and perform
intuitive understanding as well as anticipation that result in adaptation to the real world environment which
involves complex and ambiguous situations. As opposed to other kinds of intelligence Common Sense
Reasoning can be considered a discriminative characteristic of the human species but does not represent a



discriminative feature of general intelligence, as it is necessary to include other factors such as planning to
obtain machine general intelligence. It simply does not imply human intelligence though it demonstrates a
potential capability, allowing researchers to carefully look for its presence in the system's internal workings
before assessing it in a �nal behavioural test. Systems’ interpretations are necessary as Commonsense
Reasoning is a form of reasoning that originated from external or internal inquiries, or in other words
resulting from retrospective and introspective acts which makes it a crucial part of AGI

3. Internal testing: Mechanist Reasoning accounts for Explanation
and Adaptation
This chapter delves into the testing tools, targets and applications to ultimately provide some general
recommendations from this thorough analysis. Beginning with the interpretability methods, the core
features of Commonsense Reasoning are uncovered through two Cognitive Theories of Mind and then
identi�ed withMechanistic Reasoning interpretation.

3.1 Testing reasoning: Interpretability methods and Mechanistic Interpretability

Internal interpretation of the model's commonsense reasoning capabilities is achieved with Mechanistic
reasoning rather than just using Prompting, Probing or Editing. Previous methods of testing common sense
in machines leveraged Multiple-choice questions and multiple-question answers as well as adversarial
benchmarks. They all involve crafting a dataset and testing a pre-trained model on that. As we break
common sense into its core components, speci�c datasets are crafted to test di�erent domains. None of
those datasets alone su�ce to test common sense in general, but when combined they can provide a reliable
measure of how the model performs on di�erent tasks. However, their weakness resides in the possibility
that models can pass combinations of behavioural tests, without actually having general intelligence (Shen et
al. 2023). Therefore a better measure of intelligence can be captured by internal testing through
interpretability methods. One possible objection is that there exist some benchmarks that test common
sense di�erently than the mentioned approaches. The straight answer is that for frameworks like the
Context-rich Evaluation (Kejriwal at al. 2023), there is a human in the loop which underscores the test
reliability on humans as well as the contingency on external input and inquiry to achieve common sense in
machines. Having a human in the loop to evaluate the performance still underlies the weakness of the
Turing Test.

Given these circumstances, It’s natural to wonder what should be tested inside the models and which are the
appropriate tools for doing so. Commonsense Reasoning is highly contingent on knowledge retrieval and
knowledge reconstruction, as much as humans rely on retrieving information located in di�erent parts of
the hippocampus to build their memories. The Interpretability methods include Prompting, Probing and
Mechanistic Interpretability can highlight which features or aspects of the input data the model is relying on
to make predictions. In particular, Prompting is a way to extract knowledge directly from the model when
prompted or asked to do so. On the other hand, probing addresses what knowledge can be extracted from



the representations. Finally, Mechanistic Interpretability explores how the expressions of knowledge can
change with interventions on the model’s components. All these interpretability methods though fail to
address the reconstruction process involved in the model answer generation. It’s here that Mechanistic
Reasoning comes into play. It belongs to a new class of interpretability methods which harness the strengths
of the Mechanistic Interpretability. Mechanistic Reasoning involves understanding the internal workings of
a model, such as its architecture, parameters, and learning algorithms, to explain how it arrives at its
predictions or decisions. Moreover, it can provide valuable insights into howmodels generate the answers by
identifying the architecture components responsible for the answer’s construction process.

3.2 Cognitive Theories of Reasoning: Explanation and Adaptation

Given our aspiration to mimic human reasoning in AGI, it's only natural to dive into the workings of
human cognition. The theory of mind best suited to address our needs for interpretability testing is
expressed by Hugo Mercier (Mercier et al. 2017). According to Mercier human reasoning can be de�ned as
the act of justifying intuitive inferences. That’s because humans make decisions almost instinctively while
reasoning is rather a process justi�cation of what we think to others. Conversely, we can say that reasoning
also comes into play when we want to evaluate arguments made by others. Common sense reasoning is then
built upon this knowledge reconstruction process triggered by justi�cation and explanation purposes. That’s
what caused Richard Feynamn’s Learning Theory to be successful: explaining to others allows one to gain a
deeper understanding of complex concepts by identifying the gaps in the process of justi�cations. One
potential objection is the scenario where reasoning does not necessarily involve explanation and justi�cation:
System1-System2 Thinking (Khaneman 2017). Mercier’s theory contrasts to some extent with Kahneman’s
theory as it is consistent with what is sustained by System 1 thinking but restricts System 2 thinking to
necessarily involve justi�cation. One objection to that might involve the unnecessary use of justi�cation as
the primary driver as well as the potential introduction of biases in our justi�cation due to the presence of
in�uential factors such as con�rmation bias. According to that, people may engage in reasoning processes to
understand complex concepts, solve problems, or evaluate arguments, even in the absence of a need for
external justi�cation. A possible answer supporting Mercier’s theory would be that reasoning is
simultaneously a retrospective act of justi�cation and a prospective act of explanation to others. This
resembles to some extent the human’s inner voice replicating the sound of each word in the act of reading a
book, as a result of an inner reasoning process. Additionally, it can be demonstrated that the con�rmation
bias demonstrates that the reasoning process is triggered only when other individuals prove us wrong as
opposed to having a static world model like in System1 thinking.

Reasoning involves retrieving the part of the knowledge required to solve the task at hand as well as adding
to the world model the missing knowledge by reshaping it. This is formally theorised by Piaget’s Theory of
Cognitive Modeling (Rowland et al. 2022) which identi�es two main steps involved in reasoning:
Assimilation and Accommodation. In the �rst step, the observations are reshaped to �t the world model,
and in the second step, the world model is altered to accommodate experiences that cannot be interpreted
with the previous world model. This is a joint condition called Adaptation that we require models to have to
showcase commonsense reasoning. One objection to that might involve a scenario where only assimilation
or accommodation is present. Having just accommodation would be the equivalent of not being able to



memorise any type of information therefore and that is distant from how it is believed to work the human
mind. As a consequence, the construction of AI systems is based on the training process to let them infer
and make decisions. The assimilation step is humanly enabled in Chain of Thought prompting where we
ask the model to answer questions to solve the task or in Knowledge graphs where the knowledge is
assimilated according to a speci�ed graph structure. Therefore the answer provided by the model will always
be static and rely heavily on training data. Given these circumstances, It’s natural to wonder whether the
current models are assimilative and how they achieve accommodation. Current systems are assimilative in
the sense that they need to be trained to answer questions regarding unseen data and the expedient to mimic
common sense is to guide the answer by splitting it into a sequence of steps. In some cases, supervised
question-answer pairs are provided to show the models how to reason. Therefore it comes down to
providing a template or framework of reasoning. That’s one of the reasons behind models like Chatgpt
provide an error message when asking for for information on which the model is not trained. The access to
information coming from web crawling in models like Chat-GPT4 is an attempt to “assimilate” new
information. However, that is a limitation in being eligible to possess General Intelligence because that
contradicts our de�nition of AGI in not being programmed when reasoning. The ability to accommodate
new knowledge is shown in the next paragraph as part of two study cases.

3.2 Mechanistic Reasoning: Adaptation of knowledge through dynamic encoding

Following the shortcomings of the assimilative models, our focus shifts towards exploring an unsupervised
approach for retraining the world model. This could not be done with rigid symbolic structure alone, rather
it is achieved by exploiting the ability of Subsymbolic systems to self-adjusting the weights. On the other
hand, the processes involved inMechanistic Interpretability allow for the assimilation of new knowledge and
accommodate new knowledge into the world model by updating the network’s parameters as shown
through the study of the Knowledge Critical Subnetworks (Bayatiz et al. 2023) and RECKONING (Chen
et al. 2024).

The parameters a�ecting the process of knowledge reconstruction are identi�ed in the knowledge-critical
subnetworks employing Mechanistic Interpretability: when the subnetwork, representing the target
knowledge, is removed the prediction of the knowledge required to answer a certain prompt is no longer the
same. Additionally, the pre-existing knowledge that is not interested in the weights update must remain
unvaried and that is achieved with a knowledge graph that controls. This means that each entity or word has
the target knowledge expressed as a neighbourhood of knowledge families that are removed. The core
families around the targeted entity are removed and the families surrounding them are kept unaried in the
Control graph. Finally, to make sure the model keeps the same behaviours before the editing of knowledge,
some random sequences of knowledge that are not involved in the control and target knowledge are kept the
same. There is a marginal boundary between what is kept in the Control graph and what is removed as part
of the Target knowledge. This is determined by looking at the model’s precision in answering the questions
but it remains unclear how we can de�ne the knowledge that is forgotten. However, many theories have
addressed this problem regarding Cognitive Control advocating that when certain components of a neural
network are updated, it may disrupt the cognitive processes involved in maintaining and retrieving relevant
knowledge, leading to forgetting. That is additionally supported by semantic networks theory according to



which the knowledge is organised into interconnected nodes and associations, forming a network of
semantic relationships. Thanks to the Control knowledge this problem is avoided.

The RECKONING system leverages Meta Learning which consists of adapting quickly the model weights
to learn from a a few new examples of new tasks on which the network was not pre-trained. This is usually
called few-shot learning and it is done in a way where we use what we’ve learned in a di�erent task to solve
the task at hand, something we’re the Deep Learning Neural Networks struggle with. This is done by
�nding those meta parameters that minimise the test loss over many tasks. The model learns how to update
their parameters in a way that facilitates rapid learning of new tasks in a process referred to as learning to
learn. To some extent, this is similar to what humans are doing when making new strategies to learn new
things more e�ciently. Indeed learning new tasks is a matter of building new skills and knowledge based on
the existing one. Furthermore, the meta-learning leveraged by RECKONING is model-agnostic, which
means it is not bound to any model architecture and thereby can well represent a more abstract and general
principle of learning that is close to what humans do. The way the information is encoded is such that the
model to answer the questions must recall the information used when learning from the few examples. This
meta-learning method is somehow a way to let the machine encode new knowledge through assimilation
and adaptation as well as reason about the information provided and use that knowledge to answer new
questions. As an explainability method, it provides an explanation of which facts it has used to answer the
questions given a set of facts, some of which may be irrelevant. One objection to that may be that reasoning
cannot be expressed through the dynamic encoding of knowledge. The answer to that resides in the
successful capacity of RECKONING systems. Once the question is given, the knowledge required to
answer that question is no longer available but it is successfully encoded in the model parameters and later
used to answer, demonstrating the e�cacy of dynamic encoding. Additionally, the more steps of reasoning a
question requires the more e�ectively the model can encode the knowledge to answer it. That indicates the
ability of the composition of the systems as well as the e�cacy in generalising on longer chains of reasonings.
This is made possible thanks to the approach that gets this model closer to human cognitive processes, where
there is nothing such as the Attention mechanism and the forward pass.

3.3 Internal testing: a complementary approach

Based on the previous �ndings, it is possible to provide a set of recommendations for developing a model
evaluation framework that relies on internal and agnostic interpretations of models. The following steps
overcome the blind testing problem of theWinograd Schema Challenge. It is important to acknowledge that
internal testing does not replace a �nal test of intelligence rather it �lters out “false positives” or machines
incapable of intelligence by constitution.

● No human must be included in the loop
● The model must be asked to answer the questions involving solving problems of reasoning and

explain how it crafted the answer together with the most relevant facts used in doing so. Requiring
to furnish explanations avoids weak and unconvincing proof of commonsense reasoning abilities

● Mechanistic Reasoning must be used to identify the assimilation and accommodation of new
knowledge



● Model Short exposition of new facts and exempli�cation of unseen knowledge structure is
mandatory to replicate human learning capabilities.

● Comparing the models’ ability of meta-learning can provide insights into the strengths and
weaknesses of quick adaptation to new tasks or domains.

● Included in the tests context distractors, are facts that are irrelevant to the tasks, as they allow for a
better comparison of the reasoning process of models.

Following, some types of tests can be carried out based on the study cases aforementioned. These two types
of testing leverage the capacity of manipulating symbols and the ability to relate them in graphs which are
considered to be fundamental steps in machine reasoning and are addressed in Neurcompositional
computing and Commonsense Transformers.

● Training the systems on a sequence of riddles in a supervised approach prevents a closed-book
examination of the machine's common sense capabilities. To test correctly the model must be
provided with a sequence of facts, some rules on how to use the facts and �nal questions.

● Include the family of relationship problem, where the facts provided are relationships between
entities, in the questions asked to the model. To test the model's compositional ability, the facts and
the rules provided are used from the model to answer the questions.

Conclusion: implications and potential outcomes
In conclusion, this study sheds light on the failure of the prior methodologies in testing commonsense
reasoning in machines to seek a new solution based on Cognitive Theories of Mind. The new approaches
must account for a di�erent de�nition of common sense, contingent on the properties of explainability
according to Mercier and adaptability according to Piaget. Consequently, Mechanistic Reasoning is
proposed as the most appropriate method among the last developed to test those features of common sense.
Then, It is applied in two study cases to show the e�cacy of such an approach and its potential to be
extended to every model due to the existence of a model-agnostic type of learning. Finally, the discussion
concluded with recommendations of more general principles that must be taken into account when testing
models for commonsense reasoning. Ultimately, it is possible to a�rm that this approach aims to prevent
human overestimation of machine capabilities, rea�rm the importance of testing, and provide valuable
insights for constructing machines with enhanced commonsense reasoning abilities.

One potential direction of research resulting from this discussion regards whether it is possible to integrate
new measures of reasoning into the Mechanistic reasoning internal investigation. The dynamicity of
knowledge encoding when reasoning certainly involves data �ow in the following as opposed to the static
access of memory when reasoning. Thereby it would be interesting to dive through more Cognitive
Modeling Theories of Mind to establish when to measure the optimisation during learning using new
interpretation methods that account for the energy �ow used from the models in that process.
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